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1. Introduction

Dimensional regularisation [1, 2], (DREG) is a remarkably elegant procedure which com-

pletely dominates the radiative corrections industry associated with the standard model.

Advocates of alternative regularisation methods rarely proceed beyond one loop (or excep-

tionally two). The fundamental reason for the DREG hegemony is that (with little increase

in calculational difficulty) it preserves gauge invariance; that is to say, when the effective

action is separated into a finite part (which is retained) and an “infinite” part (or more

precisely, a part which tends to infinity in the limit that D = 4 − 2ε → 4) then the finite

effective action satisfies the Ward identities of the gauge symmetry, without the necessity

of introducing additional finite local counter-terms.

DREG is, however, less well-suited for supersymmetric theories because invariance of

a given action with respect to supersymmetric transformations only holds in general for

specific values of the space-time dimension D. An elegant attempt to modify DREG so as

to render it compatible with supersymmetry (SUSY) was made by Siegel [3]. The essential

difference between Siegel’s method (DRED1) and DREG is that the continuation from 4

to D dimensions is made by compactification, or dimensional reduction. Thus while the

momentum (or space-time) integrals are D-dimensional in the usual way, the number of field

components remains unchanged and consequently SUSY is undisturbed. (A pedagogical

introduction to DRED was given by Capper et al [4].)

As pointed out by Siegel himself, [5] there remain potential problems with DRED. One

manifestation of this was demonstrated in ref. [6], where it was shown that the variation

δS of the action of a pure (no chiral matter) supersymmetric gauge theory is nonzero even

1Dimensional reduction in combination with modified minimal subtraction is often known as DR; we

will use the terms DRED and DR interchangeably.
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with DRED. If δS gives a nonzero result when inserted in a Greens function this creates

an apparent violation of supersymmetric Ward identities. With DREG this happens at one

loop, but with DRED all explicit calculations to date have found zero for such insertions.

For discussion see refs. [7, 8].

We turn now to the application of DRED to non-supersymmetric theories. That DRED

is a viable alternative to DREG in the non-supersymmetric case was claimed early on [4].

Subsequently it was adopted occasionally, motivated, for example, by the fact that Dirac

matrix algebra is easier in four dimensions and in particular by the desire to use Fierz

identities. One must, however, be very careful in applying DRED to non-supersymmetric

theories because of the existence of evanescent couplings. These were first described [9]

in 1979, and later independently by van Damme and ’t Hooft [10]. After dimensional

reduction the four-dimensional vector field can be decomposed into a D-dimensional vec-

tor field and a 2ε-dimensional which transforms under gauge transformations as a scalar

and is hence known as an ε-scalar. Couplings involving the ε-scalar are called evanes-

cent couplings; in a non-supersymmetric theory they renormalise in a manner different

from the “real” couplings with which we may be tempted to associate them. It has been

conclusively demonstrated [11, 12] that there exists a set of transformations whereby the β-

functions of a particular theory (calculated using DRED) may be related to the β-functions

of the same theory (calculated using DREG) by means of coupling constant reparametri-

sation. The evanescent couplings play a crucial role in this analysis, but in the literature

on non-supersymmetric DRED their significance is often ignored, and there have been few

calculations which explicitly take them into account. In a recent paper [13], four of us

described in detail the evanescent coupling structure of QCD and calculated the gauge β-

function, β, and the mass anomalous dimension γm through three loops. We found that

at three loops β depends on the ε-scalar Yukawa coupling ge, while γm depends on both

ge and the ε-scalar quartic self couplings, λr. In this paper we extend these calculations

to the four-loop level, when β also depends on λr. These results bring the precision of our

knowledge of these quantities in DRED up to that in DREG [14 – 17].

2. Evanescent couplings

The technical framework of our calculation is described in detail in ref. [13]. Let us at this

point emphasise once more the role of the evanescent couplings and in particular elaborate

on the εεεε vertex. The part of the Lagrange density describing the latter is given by

L = . . . −
1

4

R
∑

r=1

λrH
abcd
r εa

σεc
σ′εb

σεd
σ′ + · · · , (2.1)

where the εa
σ are the ε-scalar fields, and σ, σ′ are 2ε-dimensional indices. For the gauge

group SU(N) the dimensionality R of the basis for rank-four tensors is given by R = 3

for SU(2), R = 8 for SU(3) and R = 9 for SU(N), N ≥ 4; for tensors Habcd
r symmetric

with respect to (a, b) and (c, d) exchange these numbers become R = 2, R = 3 and R = 4
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respectively [11]. We will restrict ourselves to SU(3); our basis choice reads

Habcd
1 =

1

2

(

facef bde + fadef bce
)

,

Habcd
2 = δabδcd + δacδbd + δadδbc ,

Habcd
3 =

1

2

(

δacδbd + δadδbc
)

− δabδcd . (2.2)

Note that dimensional reduction of the original action yields λ1 = g2, λ2 = λ3 = 0, but, as

we have already emphasised, this situation is not preserved by renormalisation.

Once the tensors Habcd
r are chosen, the Feynman rules are fixed in a unique way. It is

straightforward to relate the result obtained from a different choice of the Habcd
r to each

other. For example, for

H̃abcd
1 =

1

2
δabδcd ,

H̃abcd
2 =

1

2

(

δacδbd + δadδbc
)

,

H̃abcd
3 =

1

2

(

facef bde + fadef bce
)

, (2.3)

one obtains

λ1 = λ̃3 ,

λ2 =
1

6

(

λ̃1 + 2λ̃2

)

,

λ3 =
1

3

(

−λ̃1 + λ̃2

)

. (2.4)

The renormalization constants for the evanescent couplings are defined through

g0
e = µεZege ,

√

λ0
r = µεZλr

√

λr , ε0,a
σ =

√

Zε
3ε

a
σ ,

Γ0
qq̄ε = Zε

1Γqq̄ε , Γr,0
εεεε = Zr

1Γr
εεεε , (2.5)

where Γqq̄ε and Γεεεε are the one-particle irreducible ε-scalar–quark and four-ε-scalar Green

functions, respectively, the superscript “0” denotes bare quantities, and µ is the renor-

malization scale. The charge renormalization constants are obtained from the following

relations

Ze =
Zε

1

Z2

√

Zε
3

, Zλr
=

√

Zr
1

Zε
3

, (2.6)

with Z2 being the wave function renormalization constant of the quark fields.

Let us introduce the couplings

αs =
g2
s

4π
, αe =

g2
e

4π
and ηr =

λr

4π
, (2.7)

and define the corresponding β functions in the DR scheme:

βDR
s (αDR

s , αe, {ηr}) = µ2 d

dµ2

αDR
s

π
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= −

[

ε
αDR

s

π
+ 2

αDR
s

ZDR
s

(

∂ZDR
s

∂αe
βe +

∑

r

∂ZDR
s

∂ηr
βηr

)](

1 + 2
αDR

s

ZDR
s

∂ZDR
s

∂αDR
s

)−1

= −ε
αDR

s

π
−

∑

i,j,k,l,m

βDR
ijklm

(

αDR
s

π

)i
(αe

π

)j (η1

π

)k (η2

π

)l (η3

π

)m

, (2.8)

βe(α
DR
s , αe, {ηr}) = µ2 d

dµ2

αe

π

= −

[

ε
αe

π
+ 2

αe

Ze

(

∂Ze

∂αDR
s

βDR
s +

∑

r

∂Ze

∂ηr
βηr

)]

(

1 + 2
αe

Ze

∂Ze

∂αe

)−1

= −ε
αe

π
−

∑

i,j,k,l,m

βe
ijklm

(

αDR
s

π

)i
(αe

π

)j (η1

π

)k (η2

π

)l (η3

π

)m

, (2.9)

βηr
(αDR

s , αe, {ηr}) = µ2 d

dµ2

ηr

π

= −



ε
ηr

π
+ 2

ηr

Zλr





∂Zλr

∂αDR
s

βDR
s +

∂Zλr

∂αe
βe +

∑

r′ 6=r

∂Zλr

∂ηr′
βηr′









(

1 + 2
ηr

Zλr

∂Zλr

∂ηr

)−1

= −ε
ηr

π
−

∑

i,j,k,l,m

β
ηr

ijklm

(

αDR
s

π

)i
(αe

π

)j (η1

π

)k (η2

π

)l (η3

π

)m

. (2.10)

Here and in the following we do not explicitely display the dependence on the renormaliza-

tion scale µ, i.e., αs ≡ αs(µ) etc. Note that in the second line of eq. (2.8), the O(ε) terms of

βe and βηr
contribute to the finite part of βDR

s , and similarly for eqs. (2.9) and (2.10). As

we will see below, in order to compute the four-loop term of βDR one needs βe to two-loop

and βηr
(r = 1, 2, 3) to one-loop order.

In analogy to the β functions we introduce the quark mass anomalous dimension which

is defined through

γDR
m (αDR

s , αe, {ηr}) =
µ2

mDR

d

dµ2
mDR

= −πβDR
s

∂ ln ZDR
m

∂αDR
s

− πβe
∂ ln ZDR

m

∂αe
− π

∑

r

βηr

∂ ln ZDR
m

∂ηr

= −
∑

i,j,k,l,m

γDR
ijklm

(

αDR
s

π

)i
(αe

π

)j (η1

π

)k (η2

π

)l (η3

π

)m

. (2.11)

From this equation one can see that for the four-loop term of γDR
m , the beta functions βe

and βηr
are needed to three- and one-loop order, respectively, since the dependence of ZDR

m

on αe (ηr) starts at one-loop (three-loop) order [13].

The one-loop terms for βηr
and the three-loop expression for βe can be computed using

standard techniques (see e.g. ref. [18]), leading to the following non-vanishing coefficients

in eqs. (2.9) and (2.10):

βe
04000 = −

55

432
−

91

48
ζ3 −

(

725

1152
−

17

96
ζ3

)

nf +
55

768
n2

f ,
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βe
13000 =

2423

1728
+

5

36
ζ3 −

(

313

288
+

5

24
ζ3

)

nf +
9

64
n2

f ,

βe
22000 =

189157

13824
−

11

16
ζ3 −

(

35543

9216
−

73

32
ζ3

)

nf +
55

768
n2

f ,

βe
31000 =

4589

512
+

(

1157

6912
−

5

3
ζ3

)

nf −
415

5184
n2

f ,

βe
03100 = −

9

64
+

243

128
nf , βe

03010 =
5

8
−

45

64
nf ,

βe
03001 =

3

32
−

81

64
nf , βe

12100 = −
219

16
, βe

12010 =
145

48
,

βe
12001 =

73

8
, βe

02200 =
1413

512
−

729

1024
nf , βe

02020 = −
115

32
+

135

64
nf ,

βe
02002 = −

161

256
−

567

512
nf , βe

02110 =
75

8
, βe

02101 = −
471

128
+

243

256
nf ,

βe
02011 = −

85

8
, βe

21100 = −
1125

1024
, βe

21010 =
105

128
, βe

21001 =
615

512
,

βe
11200 =

891

128
, βe

11020 = −
45

4
, βe

11002 =
693

64
, βe

11101 = −
297

32
,

βe
01300 = −

1701

1024
, βe

01003 =
63

128
, βe

01210 = −
405

128
, βe

01201 =
1701

512
,

βe
01120 =

135

32
, βe

01021 = −
315

32
, βe

01102 = −
81

128
,

βe
01012 = −

315

32
, βe

01111 =
135

16
, (2.12)

β
η1

20000 = −
3

8
, β

η1

10100 =
9

2
, β

η1

02000 =
1

3
nf , β

η1

01100 = −
1

2
nf ,

β
η1

00200 = −
11

8
, β

η1

00110 = −2 , β
η1

00101 =
7

2
,

β
η2

20000 = −
9

16
, β

η2

10010 =
9

2
, β

η2

02000 =
1

24
nf , β

η2

01010 = −
1

2
nf ,

β
η2

00200 =
3

16
, β

η2

00110 =
1

2
, β

η2

00101 = −
1

2
,

β
η2

00020 = −
32

3
, β

η2

00011 = −
7

6
, β

η2

00002 =
7

12
,

β
η3

10001 =
9

2
, β

η3

01001 = −
1

2
nf , β

η3

00110 = 2 , β
η3

00101 =
5

2
,

β
η3

00020 =
10

3
, β

η3

00011 = −
20

3
, β

η3

00002 = −
7

6
, (2.13)

where nf is the number of active quark flavours and ζ3 = ζ(3) = 1.20206 . . ., where ζ is

Riemann’s zeta function. The one- and two-loop result of βe can be found in ref. [13].

3. βSYM
e and βSYM

s to three loops

In order to check our technical setup, we calculated the β functions of the strong and the

evanescent coupling constant for a supersymmetric Yang Mills (SYM) theory.
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Such a theory is obtained from massless QCD when replacing the quarks by the SUSY

partner of the gluon, the so-called gluino. Technically, this amounts to changing the colour-

matrix for the fermion-gluon coupling of QCD from the fundamental to the adjoint repre-

sentation of the gauge group. In addition, closed fermion loops have to be multiplied by

an extra factor 1/2 in order to take into account the Majorana character of the gluino.

SUSY requires that the gluino-gluon coupling αs equals the gluino-ε-scalar coupling

αe to all orders of perturbation theory, and therefore βSYM
e = βSYM

s for the respective β

functions. However, it was found in ref. [19] that this equality is violated at the three-loop

level. The result was interpreted [19, 20] as a manifestation of explicit SUSY breaking by

DRED, when employed in the component (as opposed to the superfield) formalism.

Using the approach described above, we re-calculated βSYM
s and βSYM

e through three-

loop order. When we set αe = αs, the result for βSYM
s agrees with ref. [21] (CA is the

Casimir of the adjoint representation of the gauge group):

βSYM
s = −

(αs

π

)2
[

3

4
CA +

3

8
C2

A

αs

π
+

21

64
C3

A

(αs

π

)2
]

+ O(α5
s) . (3.1)

However, in contrast to ref. [19], we find that

βSYM
e = βSYM

s + O(α5
s) . (3.2)

We draw the following conclusions from this result: (i) The expression quoted in ref. [19]

for the three-loop expression of βe is incorrect; considering the fact that this calculation has

been done almost 25 years ago, it is probably impossible to trace the origin of the difference

to our result; (ii) in a supersymmetric Yang Mills theory, the evanescent coupling constant

αe renormalises in the same way as the strong coupling constant αs up to three-loop level,

as required by SUSY; (iii) the setup of our calculation has passed a strong consistency

check.

4. βDR and γDR
m to four loops

The direct way to compute the βs and γm function is based on the evaluation of the

corresponding renormalization constants. For such a calculation one can exploit that the

divergent parts of a logarithmically divergent integral is independent of the masses and

external momenta. Thus the latter can be chosen in a convenient way (provided no infrared

divergences are introduced). Up to three loops this procedure is quite well established and

automated programs exist to perform such calculations (see, e.g., refs. [22, 23]). Also at

four-loop order this approach is feasible, however, technically quite challenging. Thus we

decided to adopt the indirect method discussed in refs. [24, 13]. It is based on the following

formulæ relating the quantities in DRED and DREG:

βDR
s = βMS

s

∂αDR
s

∂αMS
s

+ βe
∂αDR

s

∂αe
+

∑

r

βηr

∂αDR
s

∂ηr
,

γDR
m = γMS

m

∂ ln mDR

∂ ln mMS
+

πβMS
s

mDR

∂mDR

∂αMS
s

+
πβe

mDR

∂mDR

∂αe
+

∑

r

πβηr

mDR

∂mDR

∂ηr
. (4.1)

– 6 –
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Let us in the following briefly discuss the order in perturbation theory up to which the

individual building blocks are needed. Of course, the MS quantities are needed to four-loop

order; they can be found in refs. [14 – 17]. The dependence of αDR
s and mDR on αe starts

at two- and one-loop order [13], respectively. Thus, βe is needed up to the three-loop level

(cf. eq. (2.12)). On the other hand, both αDR
s and mDR depend on ηr starting from three

loops and consequently only the one-loop term of βηr
enters in eq. (4.1). It is given in

eq. (2.13).

Two further new ingredients are needed for the four-loop analysis, namely, the three-

loop relations between αDR
s and αMS

s and between mDR and mMS. The two-loop results

have already been presented in ref. [13]. Parametrising the three-loop terms by δ
(3)
α and

δ
(3)
m , we have

αDR
s = αMS

s



1 +
αMS

s

π

1

4
+

(

αMS
s

π

)2
11

8
−

αMS
s

π

αe

π

1

12
nf + δ(3)

α + · · ·



 ,

mDR = mMS

[

1 −
αe

π

1

3
+

(

αMS
s

π

)2
11

48
−

αMS
s

π

αe

π

59

72

+
(αe

π

)2
(

1

6
+

1

48
nf

)

+ δ(3)
m + · · ·

]

, (4.2)

where the dots denote higher orders in αMS
s , αe, and ηr. δ

(3)
α and δ

(3)
m are obtained from

the finite parts of three-loop diagrams (see ref. [13] for details). We find

δ(3)
α =

(

αMS
s

π

)3
(

3049

384
−

179

864
nf

)

+

(

αMS
s

)2

π3

(

−η1
9

256
+ η2

15

32
+ η3

3

128
− αe

887

1152
nf

)

+
αMS

s

π3

[

η2
1

27

256
− η2

2
15

16
− η1η3

9

64
+ η2

3
21

128
+ α2

e

(

43

864
nf +

19

1152
n2

f

)]

,

δ(3)
m =

(

αMS
s

π

)3
(

2207

864
+

19

648
nf

)

−

(

αMS
s

)2
αe

π3

(

62815

20736
+

253

1728
nf −

25

72
n2

f

)

+
αMS

s α2
e

π3

[

1973

2592
−

5

36
ζ3 +

(

103

1728
+

5

36
ζ3

)

nf

]

−
(αe

π

)3
(

7

144
+

5

216
ζ3 +

31

576
nf −

5

576
n2

f

)

−
α2

eη2

π3

5

24

−
αe

π3

(

η2
1

9

256
− η2

2

15

16
− η1η3

3

64
+ η2

3

7

128

)

. (4.3)

We performed the corresponding calculation for arbitrary gauge parameter and use the

independence of the MS–DR relation as a check of our result. Furthermore, let us stress

that also the cancellation of the explicit ln µ2 terms which occur at intermediate steps of

the calculation is non-trivial.

– 7 –
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Inserting eq. (4.3) into eq. (4.1) gives for the four-loop coefficients of the β function

βDR
50000 =

β3

256
+

166861

6144
−

9109

6912
nf +

457

20736
n2

f , βDR
41000 = −

1667

512
nf +

145

2304
n2

f ,

βDR
32000 = −

409

6912
nf +

1303

4608
n2

f , βDR
23000 =

5

1296
nf −

49

3456
n2

f −
19

2304
n3

f ,

βDR
40100 = −

171

512
+

3

512
nf , βDR

40010 =
285

64
−

5

64
nf , βDR

40001 =
57

256
−

1

256
nf ,

βDR
31100 =

9

512
nf , βDR

31010 = −
15

64
nf , βDR

31001 = −
3

256
nf ,

βDR
30200 =

2223

2048
, βDR

30020 = −
855

64
, βDR

30002 =
441

256
, βDR

30110 =
45

128
,

βDR
30101 = −

801

512
, βDR

30011 = −
45

64
, βDR

22100 =
21

128
nf , βDR

22010 = −
35

192
nf ,

βDR
22001 = −

7

64
nf , βDR

21200 = −
9

64
nf , βDR

21020 =
5

4
nf , βDR

21002 = −
7

32
nf ,

βDR
21101 =

3

16
nf , βDR

20300 = −
297

1024
, βDR

20030 = 20 , βDR
20003 = −

49

128
,

βDR
20210 = −

135

128
, βDR

20201 =
297

512
, βDR

20120 = −
45

32
, βDR

20021 =
105

32
,

βDR
20102 =

63

128
, βDR

20012 = −
105

32
, βDR

20111 =
45

16
, (4.4)

where the four-loop MS coefficient β3 is given in eq. (8) of ref. [14].

Similarly we obtain for the four-loop coefficient of the mass anomalous dimension

γDR
40000 = γ3 −

18763

2304
+

(

1

6
+

5

8
ζ3

)

nf +
29

5184
n2

f ,

γDR
31000 = −

147659

4608
+

125

48
ζ3 +

(

58253

31104
+

95

216
ζ3

)

nf +
407

7776
n2

f ,

γDR
22000 = −

134147

62208
−

281

432
ζ3 +

(

336497

124416
+

49

432
ζ3

)

nf −

(

181

10368
+

5

216
ζ3

)

n2
f ,

γDR
13000 = −

595

7776
−

25

108
ζ3 −

(

1163

10368
−

5

27
ζ3

)

nf −

(

145

3456
+

5

72
ζ3

)

n2
f ,

γDR
04000 =

191

2592
+

67

108
ζ3 +

(

301

1728
−

1

24
ζ3

)

nf +
5

384
n2

f −
5

768
n3

f ,

γDR
30100 =

9

256
, γDR

30010 = −
15

32
, γDR

30001 = −
3

128
, γDR

21100 =
201

512
,

γDR
21010 = −

85

64
, γDR

21001 = −
107

256
, γDR

20200 = −
27

256
, γDR

20020 =
15

16
,

γDR
20002 = −

21

128
, γDR

20101 =
9

64
, γDR

12100 =
351

64
, γDR

12010 = −
365

96
,

γDR
12001 = −

117

32
, γDR

11200 = −
1563

512
, γDR

11020 =
1645

96
, γDR

11002 = −
3647

768
,

γDR
11101 =

521

128
, γDR

03100 = −
13

64
−

45

64
nf , γDR

03010 =
55

96
nf ,

γDR
03001 =

13

96
+

15

32
nf , γDR

02200 = −
223

256
+

153

512
nf , γDR

02020 =
395

144
−

65

32
nf ,
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γDR
02002 =

259

1152
+

119

256
nf , γDR

02110 = −
155

48
, γDR

02101 =
233

192
−

51

128
nf ,

γDR
02011 =

545

144
, γDR

01300 =
333

512
, γDR

01030 = −20 , γDR
01003 = −

7

192
,

γDR
01210 =

105

64
, γDR

01201 = −
333

256
, γDR

01120 = −
5

16
, γDR

01021 =
35

48
,

γDR
01102 =

3

64
, γDR

01012 =
245

48
, γDR

01111 = −
35

8
, (4.5)

where the four-loop MS coefficient γ3 can be found in eq. (6) of ref. [15].

5. The four-loop supersymmetric case

We saw in section 3 that in the special case of SUSY, the relation αs = αe is preserved by

the β-functions through three loops. We now consider the supersymmetric case at the four

loop level. The results in section 4 were presented for the gauge group SU(3); however,

we have evaluated those parts that are not related to the evanescent couplings η2 and η3

also for a general Lie group G. It is well-known that a simple change of color factors,2 in

addition to the statistical factor 1/2 for closed fermion loops, translates these terms into

a supersymmetric Yang Mills theory. In this way, we can compare our four-loop results to

the gauge β-function βSYM
s which was presented in 1998 [25]:

βSYM
s = −

(αs

π

)2
[

3

4
CA +

3

8
C2

A

αs

π
+

21

64
C3

A

(αs

π

)2
+

51

128
C4

A

(αs

π

)3
]

+ O(α6
s) . (5.1)

The method employed in ref. [25] to obtain the four-loop result was very indirect, in

particular relying on the NSVZ form [26, 27] of βSYM
s . It is therefore a remarkable check

on our calculations, and indeed those of ref. [25], that we obtain precise agreement with

eq. (5.1) when we adapt our calculation to the supersymmetric case, as described above.

(As well as setting αe = αs we must of course set η1 = αs, η2 = η3 = 0).

Turning to the mass anomalous dimension we have a similar powerful check. In the

supersymmetric case the fermion mass term breaks SUSY; but γm (a.k.a. the gaugino β-

function) is in fact given in terms of βs by the simple equation [28]:

γSYM
m = παs

d

dαs

[

βSYM
s

αs

]

. (5.2)

(This relationship3 between γm and β holds in both DRED and NSVZ schemes.) Through

four loops we have at once from eq. (5.2) that

γSYM
m = −

(αs

π

)

[

3

4
CA +

3

4
C2

A

αs

π
+

63

64
C3

A

(αs

π

)2
+

51

32
C4

A

(αs

π

)3
]

+ O(α6
s) . (5.3)

2Note that this procedure differs from the one outlined in section 3, where we modified the Feynman rules

in color space and re-evaluated the color factor for each diagram. Here, we simply replace CF (fundamental

Casimir) and T (fundamental trace normalization) by CA (adjoint Casimir) in the final result.
3Note that our definition of γm in eq. (2.11) differs by a factor of two (and a factor of M) from the

definition of βM in ref. [28].
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Quite remarkably, in the supersymmetric case we again find this agrees with our calcu-

lations. This is again striking confirmation of our methodology and of the exact result

eq. (5.2).

6. Conclusions

In this paper we have applied DRED to QCD, and calculated both the gauge β-function

and the mass anomalous dimension to the four-loop level. These calculations required

careful treatment of the evanescent Yukawa and quartic couplings of the ε-scalar. In the

supersymmetric limit we explicitly verified that the β-function for the evanescent Yukawa

coupling reproduces the gauge β-function through three loops.

The popularity of the MSSM and the construction of the CERN Large Hardon Collider

(LHC) has led to many increasingly precise calculations of sparticle production and decay

processes, using DRED. The MSSM is a softly broken supersymmetric theory, so we might

well expect its dimensionless coupling sector to renormalise like the underlying supersym-

metric theory, without worrying about evanescent couplings; to test this (in the same

manner as described above) will require a generalisation of our calculations to incorporate

scalar fields. In the MSSM, however, there is in fact one evanescent quantity which must

certainly be considered: the ε-scalar mass [29]. This exists also in QCD, but affects neither

the gauge β-function nor the fermion mass anomalous dimension on simple dimensional

grounds so we have not considered it here.

If, however, one wants to match MSSM calculations on to the Standard Model (or, for

example, consider an intermediate energy theory produced by integrating out the squarks

and sleptons [30]) then evidently the use of DRED inevitably means one must worry about

evanescent couplings. Ref. [13] pointed out a couple of instances where naive treatment of

the evanescent couplings has led to incorrect conclusions; we believe that careful treatment

of the ε-scalars in higher order calculations as presented in ref. [13] and here will prove

invaluable in matching MSSM calculations to low energy physics.
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